Search results for "Papio anubis"

showing 2 items of 2 documents

Image-Guided Synthesis Reveals Potent Blood-Brain Barrier Permeable Histone Deacetylase Inhibitors

2014

Recent studies have revealed that several histone deacetylase (HDAC) inhibitors, which are used to study/treat brain diseases, show low blood-brain barrier (BBB) penetration. In addition to low HDAC potency and selectivity observed, poor brain penetrance may account for the high doses needed to achieve therapeutic efficacy. Here we report the development and evaluation of highly potent and blood-brain barrier permeable HDAC inhibitors for CNS applications based on an image-guided approach involving the parallel synthesis and radiolabeling of a series of compounds based on the benzamide HDAC inhibitor, MS-275 as a template. BBB penetration was optimized by rapid carbon-11 labeling and PET im…

PhysiologyCognitive NeuroscienceHistone Deacetylase 2Vascular permeabilityHistone Deacetylase 1Blood–brain barrierBiochemistrylaw.inventionCapillary Permeabilitychemistry.chemical_compoundlawmedicineAnimalsHumansCarbon RadioisotopesBenzamideHistone deacetylase 2BrainCell BiologyGeneral MedicinePenetration (firestop)Papio anubisHDAC1Recombinant ProteinsHistone Deacetylase Inhibitorsmedicine.anatomical_structurechemistryBiochemistryBlood-Brain BarrierPositron-Emission TomographyBenzamidesRecombinant DNABiophysicsDrug EvaluationFemaleHistone deacetylaseRadiopharmaceuticals
researchProduct

Data from: Moving in the Anthropocene: global reductions in terrestrial mammalian movements

2019

Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects no…

Alces alcesPapio cynocephalusOdocoileus hemionusSus scrofaSaiga tataricaMartes pennantimedicine and health careAnthropocenePuma concolorConnochaetes taurinusDasypus novemcinctusChrysocyon brachyurusOvibos moschatusPanthera pardusEquus hemionusTrichosurus vulpeculaLife SciencesLynx lynxPapio anubisUrsus arctosNDVI; diet; movement ecologyTolypeutes matacusmovement ecologyMedicineCapreolus capreolusEquus quaggaCanis latransPropithecus verreauxiBeatragus hunteriOdocoileus virginianusTamandua mexicanaSyncerus cafferLepus europaeusNDVICervus elaphusEquus grevyiEuphractus sexcinctusLoxodonta africanaOdocoileus hemionus columbianusProcyon lotorAntilocapra americanaMyrmecophaga tridactylaMadoqua guentheriGulo guloTapirus terrestrisPanthera oncaCerdocyon thousFelis silvestrisCanis aureusEulemur rufifronsSaguinus geoffroyiHuman FootprintRangifer tarandusCanis lupusCercocebus galeritusAepyceros melampusChlorocebus pygerythrusProcapra gutturosaLoxodonta africana cyclotisGiraffa camelopardalisdiet
researchProduct